精英家教网 > 高中数学 > 题目详情
6.$\underset{lim}{x→0}$$\frac{sinx}{x}$=1.

分析 利用等价无穷小公式sinx~x,代入即可求得极限值.

解答 解:由x→0,sinx~x,
∴$\underset{lim}{x→0}$$\frac{sinx}{x}$=$\underset{lim}{x→0}$$\frac{x}{x}$=1,
故答案为:1.

点评 本题考查求函数的极限,考查等价无穷小代换,熟练掌握所有的等价无穷小公式是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sinωx(ω>0)的部分图象如图所示,为得到函数y=cos(ωx+$\frac{π}{3}$)的图象,只需将函数y=f(x)的图象(  )
A.向左平移$\frac{5π}{12}$个单位长度B.向右平移$\frac{5π}{12}$个单位长度
C.向左平移$\frac{5π}{6}$个单位长度D.向右平移$\frac{5π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\left\{\begin{array}{l}{-{x}^{2}+3x+1,x<0}\\{2,x=0}\\{2{x}^{2}-x-3,x>0}\end{array}\right.$在[-3,3]的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知α∈($\frac{π}{2}$,π),且tan(α+$\frac{π}{4}$)=-$\frac{1}{7}$,则sin(2α-π)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,且a≠1),x>0}\end{array}\right.$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是0<a<$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知O为△ABC内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow{0}$,则△OAB的面积与△OBC的面积的比为2:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)=$\frac{1}{2}$(sinx+cosx+|sinx-cosx|),给出下列结论:
①f(x)为周期函数      
 ②f(x)的最小值为-1
③当且仅当x=2kπ(k∈Z)时,f(x)取得最小值
④当且仅当2kπ-$\frac{π}{2}$<x<(2k+1)π,(k∈Z)时,f(x)>0
⑤f(x)的图象上相邻最低点的距离为2π.
其中正确的结论序号是(  )
A.①④⑤B.①③④C.①②④D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设命题p:函数f(x)=lg(ax2-x+$\frac{1}{16}$a)的定义域为R,命题q:不等式$\sqrt{3x+1}$<1+ax对一切正实数x均成立,如果命题p∨q为真,p∧q为假,则实数a的取值范围(  )
A.($\frac{3}{2}$,2)B.(2,+∞)C.(-∞,$\frac{3}{2}$]D.[$\frac{3}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{-{2}^{x}+m}{{2}^{x+1}+n}$(其中m,n为参数)
(1)当m=n=1时,证明:f(x)不是奇函数:
(2)如果f(x)是奇函数,求实数m,n的值:

查看答案和解析>>

同步练习册答案