精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=sinωx(ω>0)的部分图象如图所示,为得到函数y=cos(ωx+$\frac{π}{3}$)的图象,只需将函数y=f(x)的图象(  )
A.向左平移$\frac{5π}{12}$个单位长度B.向右平移$\frac{5π}{12}$个单位长度
C.向左平移$\frac{5π}{6}$个单位长度D.向右平移$\frac{5π}{6}$个单位长度

分析 根据函数f(x)的图象求出ω的值,化简f(x),根据平移法则即可得出答案.

解答 解:根据函数f(x)=sinωx(ω>0)的图象知,
函数的周期为T=π,$\frac{2π}{ω}$=π,
所以ω=2;
所以f(x)=sin2x,
又f(x)=cos($\frac{π}{2}$-2x)=cos(2x-$\frac{π}{2}$),
且cos[2(x+$\frac{5π}{12}$)-$\frac{π}{2}$]=cos(2x+$\frac{π}{3}$),
所以,为得到函数y=cos(2x+$\frac{π}{3}$)的图象,
只需将函数y=f(x)的图象向左平移$\frac{5π}{12}$个单位长度.
故选:A.

点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象一个最高点为P($\frac{π}{4}$,2),相邻最低点为Q($\frac{3π}{4}$,-2),当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinx-2cos2$\frac{x}{2}$.
(1)求f($\frac{π}{4}$)的值;
(2)当x∈[0,π]时,求函数f(x)的值域;
(3)若直线x=x0是函数y=f(4x)图象的对称轴,且x0∈[0,$\frac{π}{4}$],求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,A,B,C为圆O上三点,点B平分弧$\widehat{AC}$,点P为AC延长线上一点,PQ是圆O的切线,切点为Q,BQ与AC相交于点D.
(1)求证:PD=PQ;
(2)若PC=1,AD=PD,求BD•QD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过直角坐标平面内三点O(0,0),A(2,0),B(0,2)的圆的方程为(  )
A.(x+1)2+(y+1)2=1B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=1D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知Sn={A|A=(a1,a2,a3,…,an),ai=0或1,i=1,2…,n}(n≥2),对于U,V∈Sn,d(U,V)表示U,V中相对应位置上的数不同的个数.
(1)若U=(1,1,…,1)则对于所有V∈Sn,全部d(U,V)之和D=n•2n-1
(2)对于所有U,V∈Sn,全部d(U,V)之和D=n•22n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=x|x-a|-2x+a2
(Ⅰ)若a>2,解关于x的方程f(x)=a2-2a;
(Ⅱ)若a∈[-2,4],求函数f(x)在闭区间[-3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-|x2-ax-2|,a为实数.
(Ⅰ)当a=1时,求函数f(x)在[0,3]上的最小值和最大值;
(Ⅱ)若函数f(x)在(-∞,-1)和(2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\underset{lim}{x→0}$$\frac{sinx}{x}$=1.

查看答案和解析>>

同步练习册答案