分析 由函数的图象的顶点坐标求出A,由周期求出ω,由最低点的坐标求出φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得f(x)的值域.
解答 解:由题意可得A=2,$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{3π}{4}$-$\frac{π}{4}$,∴ω=2.
再根据最高点的坐标可得2•$\frac{π}{4}$+φ=2kπ+$\frac{π}{2}$,k∈Z,即 φ=2kπ,再结合|φ|<$\frac{π}{2}$,可得φ=0,
∴f(x)=2sin2x.
当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,2x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],sin2x∈[-$\frac{\sqrt{3}}{2}$,1],∴f(x)∈[-$\sqrt{3}$,2].
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由最低点的坐标求出φ的值,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | b>c>a | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | t | 70 |
| A. | 50 | B. | 55 | C. | 56.5 | D. | 55.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{5π}{12}$个单位长度 | B. | 向右平移$\frac{5π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{5π}{6}$个单位长度 | D. | 向右平移$\frac{5π}{6}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com