精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

分析 (1)由题意求出A,T,利用周期公式求出ω,利用当x=$\frac{π}{6}$时取得最大值2,求出φ,得到函数的解析式,即可;
(2)利用三角函数图象变换规律,即可得出结论.

解答 解:(1)由题意可知A=2,T=4($\frac{5}{12}π-\frac{π}{6}$)=π,ω=2,
当x=$\frac{π}{6}$时取得最大值2,所以 2=2sin(2x+φ),所以φ=$\frac{π}{6}$,
函数f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$);
(2)函数y=2sinx的图象,先向左平移$\frac{π}{6}$个单位,得到f(x)=2sin(x+$\frac{π}{6}$),再横坐标变为原来的$\frac{1}{2}$,纵坐标不变,得到f(x)=2sin(2x+$\frac{π}{6}$).

点评 本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.有矩形铁板,其长为6,宽为4,需从四个角上剪掉边长为 x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则 x 等于(  )
A.$\frac{5-\sqrt{7}}{3}$B.$\frac{5+\sqrt{7}}{3}$C.$\frac{7-\sqrt{5}}{3}$D.$\frac{7+\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$tanα=\frac{1}{2}$,则cos2α=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$±\frac{2}{5}$D.$±\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,点P(x,y)(x>0,y>0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=$\frac{1}{2}$|NF1|=…=a.类似地:点P(x,y)(x>0,y>0)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且$\overrightarrow{{F}_{2}M}$•$\overrightarrow{MP}$=0,则|OM|的取值范围是(0,c)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设抛物线y2=-12x上一点P到y轴的距离是1,则点P到该抛物线焦点的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{y^2}{3}-\frac{x^2}{6}=1$的一个焦点坐标为(  )
A.(3,0)B.(0,3)C.$(\sqrt{3},0)$D.$(0,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α是第二象限的角,tanα=$\frac{1}{2}$,则cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆的半径为1,则双曲线的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.同时具有以下性质:“①最小正周期是π;②图象关于直线x=$\frac{π}{3}$对称;③在$[-\frac{π}{6},\frac{π}{3}]$上是增函数;④一个对称中心为$(\frac{π}{12},0)$”的一个函数是(  )
A.$y=sin(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{π}{3})$C.$y=sin(2x-\frac{π}{6})$D.$y=sin(2x-\frac{π}{3})$

查看答案和解析>>

同步练习册答案