【题目】数列{an}的前项和为Sn , 且
,用[x]表示不超过x的最大整数,如[﹣0.1]=﹣1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4++b2n﹣1+b2n= .
【答案】
﹣n﹣ ![]()
【解析】解:由
,①
可得a2﹣S1=
,a2=a1+
=
,
将n换为n﹣1,可得an﹣Sn﹣1=
,n≥2②
由an=Sn﹣Sn﹣1,
①﹣②可得,an+1=2an,
则an=a22n﹣2=
2n﹣2=
2n,
上式对n=1也成立.
则an=
2n,
bn=[an]=[
2n],
当n=1时,b1+b2=0+1=1=
﹣1﹣
;
当n=2时,b1+b2+b3+b4=0+1+2+5=8=
﹣2﹣
;
当n=3时,b1+b2+b3+b4+b5+b6=0+1+2+5+10+21=39=
﹣3﹣
;
当n=4时,b1+b2+b3+b4+b5+b6+b7+b8=0+1+2+5+10+21+42+85=166=
﹣4﹣
;
则数列{bn}的前2n项和为b1+b2+b3+b4++b2n﹣1+b2n
=
﹣n﹣
.
另解:设T2n=b1+b2+b3+b4++b2n﹣1+b2n,
由T2n﹣T2n﹣2=22n﹣1﹣1,
累加可得数列{bn}的前2n项和为
﹣n=
﹣n﹣
.
所以答案是:
﹣n﹣
.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在
,使得对任意的
,都有f(x1)≤g(x2)成立,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:
=1(a>b>0)的焦点F1 , F2 , 过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2
倍.
(Ⅰ)求C的离心率;
(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得
?若存在,求出点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为N=n(modm),例如11=2(mod3).现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于( ) ![]()
A.21
B.22
C.23
D.24
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+2a)﹣ax,a>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)的最大值为M(a),若a2>a1>0且M(a1)=M(a2),求证:
;
(Ⅲ)若a>2,记集合{x|f(x)=0}中的最小元素为x0 , 设函数g(x)=|f(x)|+x,求证:x0是g(x)的极小值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=an+2,数列{bn}的前n项和为Sn , 且Sn=2﹣bn .
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn , 求数列{cn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com