精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,点E,F分别在线段AB,AD上, AE=EB=AF=FD=4。沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF。
(Ⅰ)求二面角A′-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长。
解:(1)取线段EF的中点H,连接A′H,
因为A′E=A′F及H是EF的中点,
所以A′H⊥EF
又因为平面A′EF⊥平面BEF,及A′H平面A′EF,
所以A′H⊥平面BEF
如图建立空间直角坐标系A-xyz,
则A′(2,2,2),C(10,8,0),F(4,0,0),D(10,0,0)
=(-2,2,2),=(6,0,0)
设n=(x,y,z)为平面A′FD的一个法向量,
所以
取z=
则n=(0,-2,
又平面BEF的一个法向量m=(0,0,1),
故cos〈n,m〉=
所以二面角的余弦值为
(2)设FM=x,则M(4+x,0,0),
因为翻折后,C与A′重合,
所以CM=A′M,
故(6-x)2+82+02=(-2-x)2+22+(22,得x=
经检验,此时点N在线段BC上
所以FM=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=2BC,P,Q分别为线段AB,CD的中点,EP⊥平面ABCD.
(1) 求证:AQ∥平面CEP;
(2) 求证:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM∥平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=
12
BC,E为AD的中点,将△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求证:CE⊥AB;
(2)在线段BC上找一点F,使DF∥平面ABE.

查看答案和解析>>

同步练习册答案