精英家教网 > 高中数学 > 题目详情
(2013•嘉定区一模)一个圆锥的侧面展开图是一个半径为R的半圆,则这个圆锥的底面积是
πR2
4
πR2
4
分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,即可得出这个圆锥的底面积.
解答:解:圆锥的底面周长是:πR;
设圆锥的底面半径是r,则2πr=πR.
解得:r=
1
2
R.
则这个圆锥的底面积是
πR2
4

故答案是:
πR2
4
点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区一模)书架上有3本不同的数学书,2本不同的语文书,2本不同的英语书,将它们任意地排成一排,则左边3本都是数学书的概率为
1
35
1
35
(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)若双曲线x2-
y2
k
=1
的焦点到渐近线的距离为2
2
,则实数k的值是
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图所示的算法框图,若输出S的值是90,那么在判断框(1)处应填写的条件是
k≤8
k≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)被围于由4条直线x=±a,y=±b所围成的矩形ABCD内,任取椭圆上一点P,若
OP
=m•
OA
+n•
OB
(m、n∈R),则m、n满足的一个等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.数列{bn}的前n项和为Tn,满足Tn=1-bn
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得
1
am+9
是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=
an
an+t
,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案