精英家教网 > 高中数学 > 题目详情

定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.

 (1)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;

(2)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;

(3) 若是(2)中数列的“保三角形函数”,问数列最多有多少项.

解:(1)显然对任意正整数都成立,即是三角形数列. 

因为k>1,显然有,由,解得.

所以当时,是数列的“保三角形函数”.

(2) 由,两式相减得

所以,,经检验,此通项公式满足     

显然,因为

所以 是“三角形”数列.  

  (3) 因为是单调递减函数,所以,由

 

化简得,解得,即数列最多有26项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”(n∈N*).
(Ⅰ)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列{cn}的首项为2013,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8052,证明{cn}是“三角形”数列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项?
(解题中可用以下数据:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•青浦区二模)[理科]定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高二下学期期末考试数学试卷(解析版) 题型:解答题

定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.

(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;

(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;

(Ⅲ)根据“保三角形函数”的定义,对函数,和数列1,,()提出一个正确的命题,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北大附中高三2月统练理科数学 题型:解答题

定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.

(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;

(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;

(Ⅲ)根据“保三角形函数”的定义,对函数,和数列1,,()提出一个正确的命题,并说明理由.

 

 

查看答案和解析>>

同步练习册答案