精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C (b>0)的离心率为A(,0) B(0b)O(0,0)OAB的面积为1.

(1)求椭圆C的方程;

(2)设P是椭圆C上一点,直线PAy轴交于点M,直线PBx轴交于点N.求证:|AN|·|BM|为定值.

【答案】(1) (2)见解析.

【解析】试题分析:

运用椭圆的离心率公式和三角形的面积公式,结合的关系,解方程可得,进而得到椭圆方程。

设椭圆上点可得,求出直线的方程,令求得,求出直线的方程,令求得,化简整理,即可得到的定值

(1)解 由已知ab1.

a2b2c2,解得a2b1c.

椭圆方程为y21.

(2)证明 由(1)知,A(2,0)B(0,1)

设椭圆上一点P(x0y0),则y1.

x0≠0时,直线PA方程为y(x2)

x0yM.

从而|BM||1yM|.

直线PB方程为yx1.

y0xN.

∴|AN||2xN|.

∴|AN|·|BM|·

·

4.

x00时,y0=-1|BM|2|AN|2

∴|AN|·|BM|4.

|AN|·|BM|为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小满分13分)如图,三棱柱中,

(1)证明:

(2),求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若对任意 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设ω>0,函数y=sin(ωx+ )+2的图象向右平移 个单位后与原图象重合,则ω的最小值是(
A.
B.
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足,对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)图象上的点都位于直线y= 的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

设函数.

(1)的单调区间和极值;

(2)若关于的方程有3个不同实根,求实数a的取值范围;

(3)已知当恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案