精英家教网 > 高中数学 > 题目详情
6.设[x]表示不超过x的最大整数,用数组$[{\frac{1^2}{100}}]\;,\;\;[{\frac{2^2}{100}}]\;,\;\;[{\frac{3^2}{100}}]\;,\;…\;\;,\;[{\frac{{{{100}^2}}}{100}}]$组成集合A的元素的个数是76.

分析 根据题意,令An=$\frac{{n}^{2}}{100}$,显然0≤An≤100,依次讨论An的值,结合An=$\frac{{n}^{2}}{100}$求出n的值,最后讨论An的不同数值,即可得答案.

解答 解:根据题意,令An=$\frac{{n}^{2}}{100}$,显然0≤An≤100,
若An=0,即0≤$\frac{{n}^{2}}{100}$<1,解可得:n=1、2、3、…9,
若An=1,即1≤$\frac{{n}^{2}}{100}$<2,解可得:n=10、11、…14,
若An=2,即2≤$\frac{{n}^{2}}{100}$<3,解可得:n=15、16、17,
若An=3,即3≤$\frac{{n}^{2}}{100}$<4,解可得:n=18、19,
若An=4,即4≤$\frac{{n}^{2}}{100}$<5,解可得:n=20、21、22,
若An=5,即5≤$\frac{{n}^{2}}{100}$<6,解可得:n=23、24,
若An=6,即6≤$\frac{{n}^{2}}{100}$<7,解可得:n=25、26,
若An=7,即7≤$\frac{{n}^{2}}{100}$<8,解可得:n=27、28,
若An=8,即8≤$\frac{{n}^{2}}{100}$<9,解可得:n=29,
若An=9,即9≤$\frac{{n}^{2}}{100}$<10,解可得:n=30、31,
若An=10,即10≤$\frac{{n}^{2}}{100}$<11,解可得:n=32、33,
若An=11,即11≤$\frac{{n}^{2}}{100}$<12,解可得:n=34,
若An=12,即12≤$\frac{{n}^{2}}{100}$<13,解可得:n=35、36,
若An=13,即13≤$\frac{{n}^{2}}{100}$<14,解可得:n=37,
若An=14,即14≤$\frac{{n}^{2}}{100}$<15,解可得:n=38,
若An=15,即15≤$\frac{{n}^{2}}{100}$<16,解可得:n=39,
若An=16,即16≤$\frac{{n}^{2}}{100}$<17,解可得:n=40、41,
若An=17,即17≤$\frac{{n}^{2}}{100}$<18,解可得:n=42,
若An=18,即18≤$\frac{{n}^{2}}{100}$<19,解可得:n=43,
若An=19,即19≤$\frac{{n}^{2}}{100}$<20,解可得:n=44,
若An=20,即20≤$\frac{{n}^{2}}{100}$<21,解可得:n=45,
若An=21,即21≤$\frac{{n}^{2}}{100}$<22,解可得:n=46
若An=22,即22≤$\frac{{n}^{2}}{100}$<23,解可得:n=47,
若An=23,即23≤$\frac{{n}^{2}}{100}$<24,解可得:n=48,
若An=24,即24≤$\frac{{n}^{2}}{100}$<25,解可得:n=49,
当n≥50时,(n+1)2-n2=2n+1>100,即当n≥50时,每一个n对应一个[$\frac{{n}^{2}}{100}$]的值,
故一共有25+51=76个不同的数值,即组成集合A的元素的个数是76;
故答案为:76.

点评 本题考查元素与集合的关系,关键是理解[x]的定义,进而分类讨论,分析组成集合A的元素的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{{{{({x-1})}^0}}}{{\sqrt{x+1}}}$的定义域是{x|x>-1且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数$f(x)={log_3}({{x^2}+ax-a})$的值域是R,则实数a的取值范围是(-∞,-4]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\sqrt{{x^2}+mx+1}$的定义域为R,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设常数a∈R,函数f(x)=4x-a•2x+1+1,x∈[1,2].
(1)当a=2时,求函数$g(x)=\frac{1}{f(x)}$的值域.
(2)若函数f(x)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A、ω>0)的图象如图所示,则其解析式可以是(  )
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆的一般方程为x2+y2+Dx+Ey+F=0,则圆心坐标是(  )
A.$({\frac{E}{2},\frac{D}{2}})$B.$({-\frac{E}{2},-\frac{D}{2}})$C.$({\frac{D}{2},\frac{E}{2}})$D.$({-\frac{D}{2},-\frac{E}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,i2012等于(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的中心在坐标原点,F(1,0)为椭圆C的一个焦点,点P(2,y0)为椭圆C上一点,且|PF|=1.
(1)求椭圆C的方程;
(2)若过点M(0,1)的直线l与椭圆C交于不同的两点A、B,且$\overrightarrow{AM}$=3$\overrightarrow{MB}$,求直线l的方程.

查看答案和解析>>

同步练习册答案