【题目】如图,有四座城市
、
、
、
,其中
在
的正东方向,且与
相距
,
在
的北偏东
方向,且与
相距
;
在
的北偏东
方向,且与
相距
,一架飞机从城市
出发以
的速度向城市
飞行,飞行了
,接到命令改变航向,飞向城市
,此时飞机距离城市
有( )
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
是矩形,
平面
,
,
,四棱锥外接球的球心为
,点
是棱
上的一个动点.给出如下命题:①直线
与直线
所成的角中最小的角为
;②
与
一定不垂直;③三棱锥
的体积为定值;④
的最小值为
.其中正确命题的序号是__________.(将你认为正确的命题序号都填上)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为:
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为:
.
(Ⅰ)求直线
与曲线
公共点的极坐标;
(Ⅱ)设过点
的直线
交曲线
于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年五月最受七中学子期待的学生活动莫过于学生节,在每届学生节活动中,着七中校服的布偶“七中熊”尤其受同学和老师欢迎.已知学生会将在学生节当天售卖“七中熊”,并且会将所获得利润全部捐献于公益组织.为了让更多同学知晓,学生会宣传部需要前期在学校张贴海报宣传,成本为250元,并且当学生会向厂家订制
只“七中熊”时,需另投入成本
,
(元),
.通过市场分析, 学生会订制的“七中熊”能全部售完.若学生节当天,每只“七中熊”售价为70元,则当销量为______只时,学生会向公益组织所捐献的金额会最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
![]()
(1)若
为棱
的中点,求证:
平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正项数列:
,满足:
是公差为
的等差数列,
是公比为2的等比数列.
(1)若
,求数列
的所有项的和
;
(2)若
,求
的最大值;
(3)是否存在正整数
,满足
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,
底面
,
,
,点
为棱
的中点,点
分别为棱
上的动点(
与所在棱的端点不重合),且满足
.
![]()
(1)证明:平面
平面
;
(2)当三棱锥
的体积最大时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某银行推出一款短期理财产品,约定如下:
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数
与利息
的关系,可选择下述三种方案中的一种:
方案一:
;方案二:
;方案三:
.
请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com