精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和Sn满足:Sn=nan﹣2nn﹣1),首项=1.

(1)求数列{an}的通项公式;

(2)设数列的前n项和为Mn,求证: Mn

【答案】(1)an=4n﹣3;(2)见解析

【解析】

(1)根据和项与通项关系得an=an-1+4,再根据等差数列定义以及通项公式得结果,(2)先根据裂项相消法得Mn,再根据n范围以及单调性得结果.

解:(1)Sn=nan﹣2nn﹣1),

n≥2时,Sn-1=(n﹣1)an-1﹣2(n﹣1)(n﹣2),

相减可得an=nan﹣2nn﹣1)﹣(n﹣1)an-1+2(n﹣1)(n﹣2),

化为an=an-1+4,

{an}为首项为1,公差为4的等差数列,

即有an=1+4(n﹣1)=4n﹣3;

(2)证明:

n项和为Mn

在自然数集上递增,可得n=1时取得最小值

Mn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的单调区间;
(2)若n=k=1,且当x≥0时,f(x)≥1总成立,求实数m的取值范围;
(3)若m>0,n=0,k=1,若f(x)存在两个极值点x1、x2 , 求证: <f(x1)+f(x2)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,AC= ,BC= ,△ABC的面积为 ,若线段BA的延长线上存在点D,使∠BDC= ,则CD=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex﹣x(a∈R),其中e为自然对数的底数,e=2.71828…
(Ⅰ)判断函数f(x)的单调性,并说明理由
(Ⅱ)若x∈[1,2],不等式f(x)≥ex恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的单调区间;

,使不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,已知∠A= ,∠B= ,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED= ,EC=

(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两圆x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0

(1)判断两圆的位置关系;(2)求公共弦所在的直线方程及公共弦的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求BD1与平面A1BC1所成角的正弦值.

查看答案和解析>>

同步练习册答案