精英家教网 > 高中数学 > 题目详情
(2013•香洲区模拟)与椭圆
x2
25
+
y2
9
=1
有相同的焦点且离心率为2的双曲线标准方程是
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1
分析:求出椭圆
x2
25
+
y2
9
=1
的焦点坐标,设出双曲线的方程,据题意得到参数c的值,根据双曲线的离心率等于2,得到参数a的值,得到双曲线的方程.
解答:解:∵椭圆
x2
25
+
y2
9
=1
的焦点坐标为(-4,0)和(4,0),…(1分)
设双曲线方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),
则c=4,…(2分)
∵双曲线的离心率等于2,即
c
a
=2,∴a=2.     …(4分)
∴b2=c2-a2=12.                           …(5分);
故所求双曲线方程为
x2
4
-
y2
12
=1
.…(6分).
故答案为:
x2
4
-
y2
12
=1
点评:本题主要考查双曲线的简单性质和标准方程.解答的关键在于考生对圆锥曲线的基础知识的把握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•香洲区模拟)在锐角△ABC中,a,b,c分别为内角A,B,C,所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若a+c=5,且a>c,b=
7
,求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•香洲区模拟)已知甲:
a>1
b>1
,乙:
a+b>2
ab>1
,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•香洲区模拟)函数f(x)=2sin(
x
3
+
π
3
)
的最小正周期为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•香洲区模拟)已知直线L的参数方程为:
x=t
y=a+
3
t
(t为参数),圆C的参数方程为:
x=sinθ
y=cosθ+1
(θ为参数).若直线L与圆C有公共点,则常数a的取值范围是
[-1,3]
[-1,3]

查看答案和解析>>

同步练习册答案