精英家教网 > 高中数学 > 题目详情
函数f(x)=
lnx
x
(x>0)的单调递增区间是
 
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:求出函数f(x)=
lnx
x
的导数为y′的解析式,令y′>0 求得x的范围,即可得到函数f(x)=
lnx
x
的单调递增区间.
解答: 解:由于函数f(x)=
lnx
x
的导数为y′=
1-lnx
x2

令y′>0 可得 lnx<1,解得0<x<e,
故函数f(x)=
lnx
x
的单调递增区间是 (0,e),
故答案为:(0,e).
点评:本题主要考查利用导数研究函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为[a,b],a<c<b,当x∈[a,c]时,f(x)是单调减函数,当x∈[c,b]时,f(x)是单调增函数,则下列说法正确的是
 

①f(x)的最大值为f(c);
②f(x)的最小值为f(c);
③f(x)有最小值但无最大值;
④f(x)既有最大值又有最小值;
⑤f(x)的最大值为f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥A-ABCD中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)若设AC=2,求二面角C-AD-E余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E的中心在坐标原点O,焦点在x轴上,离心率为
3
3
,过点C(-1,0)的直线交椭圆E于A,B两点,且
CA
=2
BC
,求当△AOB面积达到最大时的直线和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和记为Sn,已知a10=17,a20=37.
(1)求通项an
(2)若sn=15,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A点在x轴上,B点在y轴上,且满足|AB|=3,若
AC
=2
CB
,则点C的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0.若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求不等式
ax
x-3
>1(a∈R)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2

(1)求sin∠DAC;
(2)求AB的长.

查看答案和解析>>

同步练习册答案