精英家教网 > 高中数学 > 题目详情
14、定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.
根据以上定义,“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的
充分非必要
条件.
分析:先判断p?q与q?p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:若“f(x)是D上的零函数且g(x)是D上的零函数”成立
则f(x)=0且g(x)=0恒成立
则f(x)•g(x)=0恒成立
则“f(x)与g(x)的积函数是D上的零函数”成立
反之,若“f(x)与g(x)的积函数是D上的零函数”成立
则f(x)=0或g(x)=0
则“f(x)是D上的零函数且g(x)是D上的零函数”不一定成立
故“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的充分不必要条件.
故答案为:充分不必要
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源:卢湾区二模 题型:填空题

定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.
根据以上定义,“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的______条件.

查看答案和解析>>

科目:高中数学 来源:卢湾区二模 题型:填空题

定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.
根据以上定义,“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的______条件.

查看答案和解析>>

科目:高中数学 来源:2010年北京大学附中高考数学考前猜题试卷(解析版) 题型:填空题

定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.
根据以上定义,“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的    条件.

查看答案和解析>>

科目:高中数学 来源:2008年上海市卢湾区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.
根据以上定义,“f(x)是D上的零函数且g(x)是D上的零函数”为“f(x)与g(x)的积函数是D上的零函数”的    条件.

查看答案和解析>>

同步练习册答案