精英家教网 > 高中数学 > 题目详情
下列函数f(x)=
2
x
(x>2)的值域是(  )
分析:根据函数f(x)=
2
x
(x>2)在(2,+∞)上是减函数,求得函数的值域.
解答:解:∵函数f(x)=
2
x
(x>2)在(2,+∞)上是减函数,∴0<
2
x
<1,
故函数f(x)=
2
x
(x>2)的值域是(0,1),
故选C.
点评:本题主要考查求函数的值域的方法,函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数①f(x)=
1
x
;②f(x)=sin2x;③f(x)=2-|x|;④f(x)=
1
cotx
中,满足“存在与x无关的正常数M,使得|f(x)|≤M对定义域内的一切实数x都成立”的有
 
.(把满足条件的函数序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x(x≤0)
-x2+2ax+1(x>0)
(a∈R),则下列结论正确的是(  )
A、?a∈R,f(x)有最大值f(a)
B、?a∈R,f(x)有最小值f(0)
C、?a∈R,f(x)有唯一零点
D、?a∈R,f(x)有极大值和极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数①f(x)=
1
x
;②f(x)=sin2x;③f(x)=2-|x|;④f(x)=tanx中,满足“存在与x无关的正常数M,使得|f(x)|≤M对定义域内的一切实数x都成立”的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2|x+
1
x
|
,下列命题判断错误的是(  )

查看答案和解析>>

同步练习册答案