精英家教网 > 高中数学 > 题目详情
12.在极坐标系中,曲线C1的极坐标方程为ρ=10cosθ-6$\sqrt{3}$sinθ,现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,曲线C2的参数方程为$\left\{\begin{array}{l}{x=6+2\sqrt{3}t}\\{y=-\sqrt{3}-t}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)若曲线C1、C2交于A、B两点,以AB为边作等边△ABD,求△ABD外接圆的圆心坐标.

分析 (1)ρ=10cosθ-6$\sqrt{3}$sinθ⇒ρ2=10ρcosθ-6$\sqrt{3}$ρsinθ⇒x2+y2-10x+6$\sqrt{3}$y=0,
$\left\{\begin{array}{l}{x=6+2\sqrt{3}t}\\{y=-\sqrt{3}-t}\end{array}\right.$(t为参数)消去参数得:x+2$\sqrt{3}$y=0;
(2)联立x+2$\sqrt{3}$y=0,x2+y2-10x+6$\sqrt{3}$y=0,消去x得y2+2$\sqrt{3}$y=0⇒A(0.0),B(12,-2$\sqrt{3}$)⇒BD=2$\sqrt{39}$×$\frac{\sqrt{3}}{2}=3\sqrt{13}$,点D在AB的中垂线上,点D的坐标为(6+$\frac{t}{\sqrt{13}}$,-$\sqrt{3}$+$\frac{2\sqrt{3}t}{\sqrt{13}}$),t=±3$\sqrt{13}$

解答 解:(1)曲线C1的极坐标方程为ρ=10cosθ-6$\sqrt{3}$sinθ⇒ρ2=10ρcosθ-6$\sqrt{3}$ρsinθ⇒x2+y2-10x+6$\sqrt{3}$y=0,
∴曲线C1的普通方程:x2+y2-10x+6$\sqrt{3}$y=0;
曲线C2的参数方程为$\left\{\begin{array}{l}{x=6+2\sqrt{3}t}\\{y=-\sqrt{3}-t}\end{array}\right.$(t为参数)消去参数得:x+2$\sqrt{3}$y=0,
∴曲线C2的普通方程:x+2$\sqrt{3}$y=0.
(2)联立x+2$\sqrt{3}$y=0,x2+y2-10x+6$\sqrt{3}$y=0,消去x得y2+2$\sqrt{3}$y=0⇒A(0.0),B(12,-2$\sqrt{3}$).
等边△ABD的边长为:2$\sqrt{39}$,BD=2$\sqrt{39}$×$\frac{\sqrt{3}}{2}=3\sqrt{13}$
点D在AB的中垂线上,点D的坐标为(6+$\frac{t}{\sqrt{13}}$,-$\sqrt{3}$+$\frac{2\sqrt{3}t}{\sqrt{13}}$),
t=3$\sqrt{13}$时,D(9,5$\sqrt{3}$),此时△ABD外接圆的圆心坐标为(7,$\sqrt{3}$).
t=-3$\sqrt{13}$时,D(3,-7$\sqrt{3}$),此时△ABD外接圆的圆心坐标为(5,-3$\sqrt{3}$).

点评 本题考查了题考察了参数方程和极坐标方程与直角坐标方程的互换.利用参数设坐标,求解距离的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.点P(x,y)在椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$上,则x+2y的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在锐角△ABC中,∠A=$\frac{π}{3}$,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是(  )
A.[$\frac{\sqrt{10}}{6}$,$\frac{\sqrt{7}}{4}$]B.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{7}}{4}$]C.[$\frac{\sqrt{10}}{6}$,$\frac{3\sqrt{3}}{8}$)D.[$\frac{\sqrt{3}}{3}$,$\frac{3\sqrt{3}}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上存在一点M,使得|PQ|=|MQ|,其中P(-b,0),Q(b,0),若tan∠MQP=-2$\sqrt{2}$,则双曲线C的渐近线方程为y=±$\frac{\sqrt{41}}{5}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2x=9,${log_2}\frac{8}{3}=y$,则x+2y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ=1.直线l与曲线C交于A,B两点.
(I)求|AB|的长;
(II)若P点的极坐标为$({1,\frac{π}{2}})$,求AB中点M到P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数$z=\frac{3-i}{1-i}$的共轭复数是2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下命题正确的是(  )
①幂函数的图象都经过(0,0)
②幂函数的图象不可能出现在第四象限
③当n=0时,函数y=xn的图象是两条射线
④若y=xn(n<0)是奇函数,则y=xn在定义域内为减函数.
A.①②B.②④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案