精英家教网 > 高中数学 > 题目详情

方程1-x-xlnx=0的根的个数为(  )个

A.3        B.2        C.1        D.0

 

【答案】

C

【解析】作出函数和函数的图像从图像上可观察得到两个函数的图像只有一个公共点,所以方程1-x-xlnx=0有一个根.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x3-(a+1)x+a,g(x)=xlnx.
(Ⅰ)若y=f(x),y=g(x)在x=1处的切线相互垂直,求这两个切线方程.
(Ⅱ)若F(x)=f(x)-g(x)单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx.
(1)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)的单调区间;
(2)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-x+2,g(x)=xlnx.
(1)如果函数f(x)的单调递减区间为(-
13
,1)
,求函数f(x)的解析式;
(2)在(1)的条件下,求函数y=f(x)的图象过点P(1,1)的切线方程;
(3)对一切的x∈(0,+∞),f'(x)+2≥2g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的两个实根,
(1)设g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求实数b的取值范围;
(3)对于(1)中的函数y=g(a),给定函数h(x)=c(xlnx-x3),(c<0),若对任意的x0∈[2,3],总存在x1∈[1,2],使得g(x0)=h(x1),求实数c的取值范围.

查看答案和解析>>

同步练习册答案