精英家教网 > 高中数学 > 题目详情
(1)设函数f(x)=
x2+2(x≥2)
2x(x<2)
,求①f〔f(1)〕;②f(x)=3求x;
(2)若f(x+
1
x
)=x2+
1
x2
求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:本题(1)根据分段函数的定义,选择适当有表达式进行计算,得到本题结论;(2)可以通过配凑法进行换元处理,得到本题结论.
解答: 解:(1)①∵函数f(x)=
x2+2(x≥2)
2x(x<2)

∴f〔f(1)〕=f(2)=22+2=6;
 ②∵f(x)=3,
∴当x<2时,2x=3,x=
3
2

当x≥2时,x2+2=3,x=±1,不合题意,
∴当f(x)=3时,x=
3
2

(2)∵f(x+
1
x
)=x2+
1
x2

∴f(x+
1
x
)=(x+
1
x
2-2,
∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞).
点评:本题考查了函数解析式求法,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

同时具有性质“①最小正周期是π,②图象关于x=
π
3
对称,③在[-
π
6
π
3
]
上是增函数”的一个函数是(  )
A、y=sin(2x-
π
6
)
B、y=cos(2x+
π
3
)
C、y=sin(
x
2
+
π
6
)
D、y=cos(2x-
π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx+cosx,2cosx),
n
=(sinx+cosx,cosx),记f(x)=
m
n

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若方程f(x)-1=0在区间(0,π)内有两个零点x1,x2,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+2)=-f(x),且在[-6,-4]上是增函数,在锐角△ABC中,令m=f(sinA+sinB),n=f(cosA+cosC),则m和n的大小关系为(  )
A、m>nB、m<n
C、m=nD、不能确定大小

查看答案和解析>>

科目:高中数学 来源: 题型:

某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取64人,则应在高三级中抽取的学生人数
 

高一级高二级高三级
女生385ab
男生375360c

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,则该程序运行后输出的k值是(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|log
1
2
x≥2}
,则CRA=(  )
A、(
1
4
,+∞)
B、(-∞,0]∪(
1
4
,+∞)
C、(-∞,0]∪[
1
4
,+∞)
D、[
1
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,i为虚数单位,若(1-2i)(x+i)=4-3i,则x的值等于(  )
A、-6B、-2C、2D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中a1=1,an+1=2an+an2+bn+c(n∈N*).a,b,c为实常数.
(Ⅰ)若a=b=0,c=1,求数列{an}的通项公式;
(Ⅱ)若a=-1,b=3,c=0.
①是否存在常数λ,μ使得数列{an+λn2+μn}是等比数列,若存在,求出λ,μ的值,若不存在,请说明理由;
②设 bn=
1
an+n-2n-1
,Sn=b1+b2+b3+…+bn.证明:n≥2时,Sn
5
3

查看答案和解析>>

同步练习册答案