【题目】已知抛物线E:
,圆C:
.
若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;
在
的条件下,若直线l交抛物线E于A,B两点,x轴上是否存在点
使
为坐标原点
?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)
;(2)存在定点![]()
【解析】
求得抛物线的焦点,设出直线的方程,运用直线和圆相切的条件:
,解方程可得所求直线方程;
设出A,B的坐标,联立直线方程和抛物线方程,运用韦达定理和直线的斜率公式,化简整理,解方程可得t,即M的坐标,即可得到结论.
由题意可得抛物线的焦点
,
当直线的斜率不存在时,过F的直线不可能与圆C相切,设直线的斜率为k,方程设为
,
即
,由圆心
到直线的距离为
,
当直线与圆相切时,
,解得
,
即直线方程为
;
可设直线方程为
,
,
,
联立抛物线方程可得
,则
,
,
x轴上假设存在点
使
,
即有
,可得
,
即为
,
由
,
,
可得
,
即
,即
,
符合题意;
当直线为
,由对称性可得
也符合条件.
所以存在定点
使得
.
科目:高中数学 来源: 题型:
【题目】设抛物线C的顶点在原点,焦点F在y轴上,开口向上,焦点到准线的距离为![]()
(1)求抛物线的标准方程;
(2)已知抛物线C过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为等腰梯形,
,其中点
在以
为直径的圆上,
,
,
,平面
平面
.
![]()
(1)证明:
平面
.
(2)设点
是线段
(不含端点)上一动点,当三棱锥
的体积为1时,求异面直线
与
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=
,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
的参数方程为
(
为参数),过点
作斜率为
的直线
与圆
交于
,
两点.
(1)若圆心
到直线
的距离为
,求
的值;
(2)求线段
中点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
分别为
的中点.
![]()
(Ⅰ)证明:平面
∥平面
;
(Ⅱ)若
,
(1)求平面
与平面
所成锐二面角的余弦值;
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(第
周)和市场占有率(
)的几组相关数据如下表:
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据表中的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)根据上述线性回归方程,预测在第几周,该款旗舰机型市场占有率将首次超过
(最后结果精确到整数).
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18.则这4个结论中,正确结论的个数为( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com