精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知函数

(Ⅰ)若函数处取到极值,求的值.

(Ⅱ)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数的的“HOLD点”.当时,试问函数是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.

 

【答案】

(Ⅰ);(Ⅱ)存在,为,下面给出证明见解析;

【解析】(I)由题意可知建立关于a的方程,求出a值.

(II)解本小题的关键:先读懂题意,什么样的点称为“HOLD点”.然后求出, 因为, 所以要证

即证, 然后再构造函数,求其最小值即可.

(Ⅰ)……………………3分

由题意知…………………………………………6分

(Ⅱ)存在,为,下面给出证明

,故

要证,即证

即证当时,,当时,

故当单调递减

单调递增

所以

故当,当时,

 

练习册系列答案
相关习题

科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题

(本题满分15分)已知点(0,1),,直线都是圆的切线(点不在轴上).
(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:2013届江苏省扬州市高二下期中数学试卷(解析版) 题型:解答题

(本题满分15分)

已知命题p,命题q. 若“pq”为真命题,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题

(本题满分15分)已知函数

(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;

(Ⅱ)当时,求函数的最大值;

(Ⅲ)当,且时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题

(本题满分15分)已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,

(1)当直线的斜率为1时,求线段AB的长;

(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分15分)已知直线,曲线

   (1)若且直线与曲线恰有三个公共点时,求实数的取值;

   (2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步练习册答案