µÈ²îÊýÁÐ{an}µÄÊ×ÏîºÍ¹«²î¶¼ÊÇ
23
£¬¼Ç{an}Ç°nÏîºÍΪSn£®µÈ±ÈÊýÁÐ{bn}¸÷Ïî¾ùΪÕýÊý£¬¹«±ÈΪq£¬¼Ç{bn}µÄÇ°nÏîºÍΪTn£®
£¨¢ñ£© Ð´³öSi£¨i=1£¬2£¬3£¬4£¬5£©¹¹³ÉµÄ¼¯ºÏA£»
£¨¢ò£© ÈôqΪÕýÕûÊý£¬ÎÊÊÇ·ñ´æÔÚ´óÓÚ1µÄÕýÕûÊýk£¬Ê¹µÃTk£¬T2kͬʱΪ¼¯ºÏAÖеÄÔªËØ£¿Èô´æÔÚ£¬Ð´³öËùÓзûºÏÌõ¼þµÄ{bn}µÄͨÏʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£© Èô½«SnÖеÄÕûÊýÏî°´´ÓСµ½´óµÄ˳Ðò¹¹³ÉÊýÁÐ{cn}£¬Çó{cn}µÄÒ»¸öͨÏʽ£®
·ÖÎö£º£¨¢ñ£©Ö±½Ó´úÈëµÈ²îÊýÁеÄÇóºÍ¹«Ê½µÃµ½Sn£®ÔÙ°Ñn=1£¬2£¬3£¬4£¬5·Ö±ð´úÈë¼´¿ÉÇó³ö¼¯ºÏA£»
£¨¢ò£©ÓÉÓÚ{bn}µÄÇ°nÏîºÍΪTn£®¹ÊÓ¦·ÖÀàÌÖÂÛ£¬È»ºóÀûÓÃTk£¬T2kͬʱΪ¼¯ºÏAÖеÄÔªËؽøÐÐÇó½â£»
£¨¢ó£©¡ßSn=na1+
n(n-1)
2
d
=
2
3
¡Á[n+
n(n-1)
2
]=
n(n+1)
3
£®SnÖеÄÕûÊýÏî°´´ÓСµ½´óµÄ˳Ðò¹¹³ÉÊýÁÐ{cn}£¬¡àn=3k»òn+1=3k£¨k¡ÊZ£©£¬¹Ê¿ÉÇó£®
½â´ð£º½â£º£¨¢ñ£©¡ßSn=na1+
n(n-1)
2
d
=
2
3
¡Á[n+
n(n-1)
2
]=
n(n+1)
3
£®
°Ñn=1£¬2£¬3£¬4£¬5·Ö±ð´úÈ룮
¡àA={
2
3
£¬2£¬4£¬
20
3
£¬10}£®
£¨¢ò£©µ±q=1ʱ£¬Tk=kb1£¬T2k=2kb1£»
ËùÒÔT2k=2Tk£»
¡ßTk£¬T2kͬʱΪ¼¯ºÏAÖеÄÔªËØ£¬
¡àTk=2£¬T2k=4⇒kb1=2£¬
¡àb1=
2
k
£¬
¡àbn=
2
k
£»
µ±q¡Ù1ʱ£¬Tk=
b1(1-qk)
1-q
£¬T2k=
b1(1-q2k)
1-q
£»
T2k
Tk
=1+qk£¬¡ßqΪÕýÕûÊý£¬ÕýÕûÊýk´óÓÚ1£®
¡àµ±Tk=
2
3
ʱ£¬T2k=
20
3
£¬µÃµ½qk=9⇒q=3£¬k=2⇒Tk=T2=b1£¨1+q£©=b1¡Á4=
2
3
⇒b1=
1
6
£¬¹Êbn=
1
6
¡Á3n-1
=
1
2
¡Á3n-2£»
µ±Tk=2ʱ£¬T2k=10£¬µÃµ½qk=4⇒q=2£¬k=2⇒Tk=T2=b1£¨1+q£©=b1¡Á3=2⇒b1=
2
3
£¬bn=
2
3
¡Á2n-1=
1
3
¡Á2n£»
µ±Tk=4£¬Tk=
20
3
£¬Tk=10ʱ£¬ÕÒ²»µ½Âú×ãÌõ¼þµÄ{bn}£®
£¨¢ó£©Sn=na1+
n(n-1)
2
d
=
2
3
¡Á[n+
n(n-1)
2
]=
n(n+1)
3
£®
¡ßSnÖеÄÕûÊýÏî°´´ÓСµ½´óµÄ˳Ðò¹¹³ÉÊýÁÐ{cn}£¬¡àn=3k»òn+1=3k£¨k¡ÊZ£©£¬
¹Ê¿ÉÇócn=n£¨3n+1£©£¬»òcn=n£¨3n-1£©£®
µãÆÀ£º±¾ÌâµÄ¿¼µãÊǵȲîÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¹Ø¼üÊÇÀí½âÌâÒ⣬ºÏÀíת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪa1£¬¹«²îΪd£¨a1¡ÊZ£¬d¡ÊZ£©£¬Ç°nÏîµÄºÍΪSn£¬ÇÒS7=49£¬24£¼S5£¼26£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊýÁÐ{
1anan+1
}
µÄÇ°nÏîµÄºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîÊǶþÏîʽ(
x
-
2
x
)5
Õ¹¿ªÊ½µÄ³£ÊýÏ¹«²îΪ¶þÏîʽչ¿ªÊ½µÄ¸÷ÏîϵÊýºÍ£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪa£¬¹«²îΪb£¬ÇÒ²»µÈʽax2-3x+2£¾0µÄ½â¼¯Îª£¨-¡Þ£¬1£©¡È£¨b£¬+¡Þ£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ
£¨2£©ÉèÊýÁÐ{bn}Âú×ãbn=
1anan+1
ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×Ïîa1=1£¬¹«²îd=2£¬ÆäÇ°nÏîºÍSnÂú×ãSk+2-Sk=24£¬Ôòk=
5
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ãòÖݶþÄ££©ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪa£¬¹«²îΪb£¬µÈ±ÈÊýÁÐ{bn}µÄÊ×ÏîΪb£¬¹«±ÈΪa£¬n=1£¬2£¬¡­£¬ÆäÖÐa£¬b¾ùΪÕýÕûÊý£¬ÇÒb2=6£¬a3=8£¬a£¼b£®
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©ÊýÁжÔÓÚ{an}£¬{bn}£¬´æÔÚ¹Øϵʽam+1=bn£¬ÊÔÇóa1+a2+¡­+am£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸