精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的首项为a1,公差为d(a1∈Z,d∈Z),前n项的和为Sn,且S7=49,24<S5<26.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{
1anan+1
}
的前n项的和为Tn,求Tn
分析:(1)利用等差数列的通项公式和前n项和公式已知即可得出;
(2)利用裂项求和即可得出.
解答:解:(1)由题意可得
7a1+
7×6
2
d=49
24<5a1+
5×4
2
d<26
a1∈Z,d∈Z
,解得
a1=1
d=2

∴an=a1+(n-1)d=2n-1.
(2)∴
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)
点评:熟练掌握等差数列的通项公式和前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案