精英家教网 > 高中数学 > 题目详情
已知椭圆+=1,若它的一条弦AB被M(1,1)平分,则AB所在的直线方程为________.

解析:设A(x1,y1)、B(x2,y2),

=1,                                                               ①

=1.                                                                 ②

①-②化为,

即直线AB的斜率为-.

由点斜式得x+4y-5=0.

答案:x+4y-5=0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
2
2
,在椭圆E上存在A,B两点关于直线l:y=x+1对称.
(Ⅰ)现给出下列三个条件:①直线AB恰好经过椭圆E的一个焦点;②椭圆E的右焦点F到直线l的距离为2
2
;③椭圆E的左、右焦点到直线l的距离之比为
1
2

试从中选择一个条件以确定椭圆E,并求出它的方程;(注:只需选择一个方案答题,如果用多种方案答题,则按第一种方案给分)
(Ⅱ)若以AB为直径的圆恰好经过椭圆E的上顶点S,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1,若它的一条弦AB被M(1,1)平分,则AB所在的直线方程为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆=1,直线l:4x-5y+40=0.椭圆上是否存在一点,它到直线l的距离最小?若存在,求出该最小距离是多少?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省襄阳四中、荆州中学、龙泉中学联考高二(下)期中数学试卷(理科)(解析版) 题型:选择题

给出下列命题:
①已知椭圆=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是( )
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

同步练习册答案