精英家教网 > 高中数学 > 题目详情
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1,
(1)求数列{an}的通项公式;
(2)设bn=tanan·tanan+1,求数列{bn}的前n项和Sn
解:(1)设t1,t2,…,tn+2构成等比数列,其中t1=1,tn+2=100,
则Tn=t1·t2·…·tn+1·tn+2, ①
Tn=tn+2·tn+1·…·t2·t1,②
①×②并用利titn+3-i=t1tn+2=102(1≤i≤n+2),
得Tn2=(t1tn+2)·(t2tn+1)·…·(tn+1t2)·(tn+2t1)=102(n+2)
∴an=lgTn=n+2,n≥1。
(2)由题意和(1)中计算结果,知bn=tan (n+2)·tan(n+3),n≥1,
另一方面,利用

所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:tan(k+1)•tank=
tan(k+1)-tanktan1
-1,k∈N*

(Ⅲ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,(n∈N*),则数列{an}的通项公式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数学公式
(Ⅲ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省凤阳艺荣高考补习学校高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案