精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,函数h(x)=f(x)-g(x)在定义域内是增函数,且h′(x)义域内存在零点(h′(x)为h(x)的导函数).
(I)求a的值;
(II)设A(x1,y1),B(x2,y2),(x1<x2)是函数y=g(x)的图象上两点,g′(x)=,试比较x1与x的大小,并说明理由.
【答案】分析:(I)写出h(x),求导数h′(x),h(x)在区间(0,+∞)上是增函数,等价于h′(x)≥0在区间(0,+∞)上恒成立,即在区间(0,+∞)上恒成立,由此得△≤0,由h′(x)存在正零点,得△≥0,从而△=0,由此可解a值;
(II)由g′(x)=得,,作差:x1-x=,构造函数r(x)=xlnx2-xlnx-x2+x,利用导数可判断r(x)的单调性,借助单调性即可判断差的符号,从而得到结论;
解答:解:(I)因为h(x)=-2x+logax+2(x>0),
所以h′(x)=x-2+=
因为h(x)在区间(0,+∞)上是增函数,
所以≥0在区间(0,+∞)上恒成立,即在区间(0,+∞)上恒成立,
所以△≤0,
又h′(x)存在正零点,故△≥0,
所以△=0,即4-=0,所以lna=1,
所以a=e.
(II)结论x>x1,理由如下:
由(I),g′(x)=-=-
由g′(x)=得,
x1-x=x1-=
∵x1<x2,∴lnx2-lnx1>0,
令r(x)=xlnx2-xlnx-x2+x,
r′(x)=lnx2-lnx在(0,x2]上,r′(x)>0,
所以r(x)在(0,x2]上为增函数,
当x1<x2时,r(x1)<r(x2)=0,即x1lnx2-x1lnx1-x2+x1<0,
从而x>x1得到证明.
点评:本题考查利用导数研究函数的单调性,考查函数单调的充要条件及恒成立问题的解决,解决(II)问的关键是根据题目特点灵活构造函数,对能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案