精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.

I)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.

II)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?

非手机迷

手机迷

合计

合计

附:随机变量(其中为样本总量).

参考数据

0.15

0.10

0.05

0.025

span>2.072

2.706

3.841

5.024

【答案】(Ⅰ)高一年级,理由见解析;(Ⅱ)列联表见解析,90%

【解析】

(Ⅰ)根据频数分布表和频率分布直方图,分别计算两个年级学生是“手机迷”的概率,即可比较,作出判断.

(Ⅱ)根据题意,求出手机迷人数和非手机迷人数,完善列联表,即可由独立性检验的公式求得,进而作出判断即可.

(Ⅰ)由频数分布表可知,高一学生是“手机迷”的概率为

由频率分布直方图可知,高二学生是“手机迷”的概率为=(0.0025+0.010)×20=0.25

因为P1P2,所以高一年级的学生是“手机迷”的概率大.

(Ⅱ)由频率分布直方图可知,在抽取的100人中,

“手机迷”有(0.010+0.0025)×20×100=25(人),

非手机迷有10025=75(人).

从而2×2列联表如下:

非手机迷

手机迷

合计

30

15

45

45

10

55

合计

75

25

100

2×2列联表中的数据代入公式计算,

结合参考数据,可知3.0302.706,所以有90%的把握认为“手机迷”与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mx2+(1-3m)x-4,m∈R.

(1)当m=1时,求f(x)在区间[-2,2]上的最大值和最小值.

(2)解关于x的不等式f(x)>-1.

(3)当m<0时,若存在x0∈(1,+∞),使得f(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2018年某全国性大型活动的省级卫视新闻台融合指数的数据,对名列前20名的省级卫视新闻台的融合指数进行分组统计,结果如表所示.

组号

分组

频数

1

2

2

8

3

7

4

3

现从融合指数在内的省级卫视新闻台中随机抽取2家进行调研,求至少有1家的融合指数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一段推理是:直线平行于平面,则平行于平面内的所有直线;已知直线平面,直线平面,直线平面,则直线平面.”其结论显然是错误的,这是因为

A.使用了三段论,但大前提是错误的B.使用了三段论,但小前提是错误的

C.使用了归纳推理D.使用了类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.

(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;

(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数对任意实数都满足,且当时,

1)判断函数的奇偶性,并证明;

2)判断函数的单调性,并证明;

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDEF中,四边形ABCD为矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求证:BF∥平面ADE;

(2)在线段CF上求一点G,使锐二面角B-EG-D的余弦值为.

查看答案和解析>>

同步练习册答案