精英家教网 > 高中数学 > 题目详情
a>0且a≠1,P=loga(a2+1),Q=loga(a3+1),则PQ的大小关系是(  )

A.PQ

B.PQ

C.a>1时,PQ;0<a<1时,PQ

D.以上都不对

解析:Q-P=loga,

a>1时,a3+1<(a2+1)a=a3+a.?

a,则Q-P<0.?

当0<a<1时,a3+1>(a2+1)a=a3+a,Q-P<0,则QP,故选A.?

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a满足a>0且a≠1.命题P:函数y=loga(x+1)在(0,+∞)内单调递减;命题Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“P∨Q”为真且“P∧Q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且满足f(x)>1,求x的取值范围;
(2)若g(x)=ax2-x,是否存在a使得f(x)在区间[
1
2
,3]上是增函数?如果存在,说明a可以取哪些值;如果不存在,请说明理由.
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)=log4(4x2-x)是否为在[
1
2
,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在(-∞,+∞)上是减函数;q:方程ax2+x+
12
=0
有两个不等的实数根.若“p∧q”为假命题,“p∨q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=
1
2
+
1
2x-1
(x≠0)
是奇函数;
③函数y=sin(-2x)在区间[
π
4
4
]
上是减函数;
④函数y=cos|x|是周期函数;
⑤对于命题p:?x∈R,使得x2+x+1<0,则?p:?x∈R,均有x2+x+1≥0.(其中“?”表示“存在”,“?”表示“任意”).
其中错误结论的序号是
.(填写你认为错误的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)下列说法正确的是(  )

查看答案和解析>>

同步练习册答案