精英家教网 > 高中数学 > 题目详情
如图,点P(3a,a)是反比例函y=
k
x
(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为(  )
分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的
1
4
,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.
解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:
1
4
πr2=10π
解得:r=2
10

∵点P(3a,a)是反比例函y=
k
x
(k>0)与⊙O的一个交点.
∴3a2=k且
(3a)2+a2
=r
∴a2=
1
10
×(2
10
2=4.
∴k=3×4=12,
则反比例函数的解析式是:y=
12
x

故选C.
点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
5
5
,又PA⊥平面ABCD,AD=3AB=3PA=3a,
(I)求二面角P-CD-A的正切值;
(II)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大小(用反三角函数表示);
(2)点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,在△ABC中,∠C=90°,AC=BC=3a,点P在AB上,PE∥BC交AC于E,PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(Ⅰ)求证:B′C∥平面A′PE.
(Ⅱ)若AP=2PB,求二面角A′-PC-E的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:考生在下面两小题中,任选一道作答,如果全做则按第1小题评分.
(1)《几何证明选讲》选做题
如图,半径分别为a和3a的圆O1与圆O2外切于T,自圆O2上一点P引圆O1的切线,切点为Q,若PQ=2a,则PT=
2
6
3
a
2
6
3
a

(2)《坐标系与参数方程》选做题
从极点O作射线交直线ρcosθ=3于点M,P为线段OM上的点,且|OM|•|OP|=12,则P点轨迹的极坐标方程为
p=4cosθ
p=4cosθ

查看答案和解析>>

同步练习册答案