15£®Íø¹ºÒѳÉΪµ±½ñÏû·ÑÕßϲ»¶µÄ¹ºÎ﷽ʽ£¬Ä³»ú¹¹¶ÔA¡¢B¡¢C¡¢DËļÒͬÀàÔ˶¯·þ×°ÍøµêµÄ¹Ø×¢ÈËÊýx£¨Ç§ÈË£©ÓëÆäÉÌÆ·ÏúÊÛ¼þÊýy£¨°Ù¼þ£©½øÐÐͳ¼Æ¶Ô±È£¬µÃµ½±í¸ñ£º
 ÍøµêÃû³Æ A B C D
 x 3 4 6 7
 y 11 12 2017
ÓÉÉ¢µãͼµÃÖª£¬¿ÉÒÔÓûعéÖ±Ïß·½³Ìy=bx+aÀ´½üËÆ¿Ì»­ËüÃÇÖ®¼äµÄ¹ØÏµ
£¨1£©ÇóyÓëxµÄ»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄ»Ø¹éÄ£ÐÍÖУ¬ÇëÓÃR2˵Ã÷£¬ÏúÊÛ¼þÊýµÄ²îÒìÓжà´ó³Ì¶ÈÊÇÓɹØ×¢ÈËÊýÒýÆðµÄ£¿£¨¾«È·µ½0.01£©
²Î¿¼¹«Ê½£º£º$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£»$\hat a=\overline y-\hat b\overline x$£»R2¨T1-$\frac{\sum_{i=1}^{n}£¨{y}_{i}-\widehat{{y}_{i}}£©^{2}}{\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}$
²Î¿¼Êý¾Ý£º$\sum_{i=1}^{n}$xiyi=320£»$\sum_{i=1}^{n}$x2=110£®

·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄÊý¾Ý£¬×ö³öx£¬yµÄƽ¾ùÊý£¬¼´µÃµ½Õâ×éÊý¾ÝµÄÑù±¾ÖÐÐĵ㣬¸ù¾Ý×îС¶þ³Ë·¨×ö³öÏßÐԻع鷽³ÌµÄϵÊý£¬Ð´³öÏßÐԻع鷽³Ì£®
£¨2£©Ïà¹ØÖ¸ÊýR2µÄ¼ÆË㹫ʽ£¬ÇóµÃR2µÄÖµ£¬¼´¿ÉÇóµÃÏúÊÛ¼þÊýµÄ²îÒìÓжà´ó³Ì¶ÈÊÇÓɹØ×¢ÈËÊýÒýÆðµÄ£®

½â´ð ½â£º£¨1£©ÓÉ$\overline{x}$=$\frac{3+4+6+7}{4}$=5£¬$\overline{y}$=$\frac{11+12+20+17}{4}$=15£¬$\sum_{i=1}^{4}$xiyi=320£¬$\sum_{i=1}^{4}$${x}_{i}^{2}$=110£¬
$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}\overline{y}}{\sum_{i=2}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}}$=$\frac{320-300}{110-100}$=2£¬
¡à$\hat a=\overline y-\hat b\overline x$=15-2¡Á5=5£¬
¡àÏßÐԻع鷽³ÌΪ$\hat{y}$=2x+5£»
£¨2£©$\sum_{i=1}^{4}$£¨yi-$\overline{{y}_{i}}$£©2=54£¬$\sum_{i=1}^{4}$£¨yi-$\widehat{{y}_{i}}$£©2=14£¬
R2¨T1-$\frac{\sum_{i=1}^{4}£¨{y}_{i}-\widehat{{y}_{i}}£©^{2}}{\sum_{i=1}^{4}£¨{y}_{i}-\overline{y}£©^{2}}$=1-$\frac{14}{54}$=0.74£¬
˵Ã÷ÏúÊÛ¼þÊýµÄ²îÒìÓÐ74%³Ì¶ÈÊÇÓɹØ×¢ÈËÊýÒýÆðµÄ£®

µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²é×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌµÄϵÊý¼°Ïà¹ØÖ¸ÊýµÄ¼ÆË㣬¿¼²éÑù±¾ÖÐÐĵãµÄÇ󷨣¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèa£¬bÊÇÁ½¸ö²»ÏàµÈµÄÕýÊý£¬ÇÒalna+b=blnb+a£¬Ôò£¨¡¡¡¡£©
A£®£¨a-1£©£¨b-1£©£¾0B£®0£¼a+b£¼2C£®ab£¾1D£®0£¼ab£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒ2cos2$\frac{B}{2}$=$\sqrt{3}$sinB£¬a=3c£®
£¨1£©Çó½ÇBµÄ´óСºÍtanCµÄÖµ£»
£¨2£©Èôb=1£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÈçͼËùʾµÄ¶àÃæÌåÖУ¬ÒÑÖªÁâÐÎABCDºÍÖ±½ÇÌÝÐÎACEFËùÔ򵀮½Ã滥Ïà´¹Ö±£¬ÆäÖСÏFACΪֱ½Ç£¬¡ÏABC=60¡ã£¬EF¡ÎAC£¬EF=$\frac{1}{2}$AB=1£¬FA=$\sqrt{3}$£®
£¨1£©ÇóÖ¤£ºDE¡ÍÆ½ÃæBEF£»
£¨2£©Çó¶àÃæÌåABCDEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Å×ÎïÏßy2=4xµÄ½¹µãΪF£¬AΪÅ×ÎïÏßÉÏÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬ÒÔµãFΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²ÓëÏß¶ÎAFµÄ½»µãΪB£¬µãAÔÚyÖáÉϵÄÉäӰΪµãN£¬ÇÒ|ON|=2$\sqrt{3}$£¬ÔòÏß¶ÎNBµÄ³¤¶ÈÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑ֪бÂÊΪ2µÄÖ±Ïßl¹ýµãP£¨1£¬3£©£¬½«Ö±ÏßlÑØxÖáÏòÓÒÆ½ÒÆm¸öµ¥Î»µÃµ½Ö±Ïßl¡ä£¬ÈôµãA£¨2£¬1£©ÔÚÖ±Ïßl¡äÉÏ£¬ÔòʵÊým=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏA={0£¬1}£¬B={1£¬2£¬3}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®{1}B£®{0£¬2£¬3}C£®{0£¬1£¬2£¬3}D£®{1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èç¹ûʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}{x+y-3¡Ü0}\\{x-y¡Ü0}\\{x-1¡Ý0}\end{array}\right.$£¬Ôòz=x+2yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®3B£®$\frac{9}{2}$C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1+a9=16£¬a4=1£¬Ôòa6µÄÖµÊÇ£¨¡¡¡¡£©
A£®64B£®31C£®30D£®15

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸