精英家教网 > 高中数学 > 题目详情
已知在数列{an}中,a1=-1,且an=3an-1-2n+3(n≥2,n∈N+).
(Ⅰ)求a2,a3,并证明数列{an-n}是等比数列;
(Ⅱ)求a1+a2+…+an的值.
分析:(Ⅰ)利用a1=-1,且an=3an-1-2n+3,代入计算,可得a2,a3,又an-n=3[an-1-(n-1)],即可得到数列{an-n}是以-2为首项,3为公比的等比数列;
(Ⅱ)确定数列{an}的通项,再分组求和,即可得到结论.
解答:解:(Ⅰ)∵a1=-1,且an=3an-1-2n+3,∴a2=-3-4+3=-4,a3=-12-6+3=-15
∵an=3an-1-2n+3,∴an-n=3[an-1-(n-1)]
∴数列{an-n}是以-2为首项,3为公比的等比数列;
(Ⅱ)由(Ⅰ)知,an-n=(-2)•3n-1
∴an=n-2•3n-1
∴a1+a2+…+an=
n(1+n)
2
-3n+1.
点评:本题考查数列递推式,考查等比数列的证明,考查数列的通项与求和,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=7,an+1=
7anan+7
,计算这个数列的前4项,并猜想这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,an≠0,(n∈N*).求证:“{an}是常数列”的充要条件是“{an}既是等差数列又是等比数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河北区一模)已知在数列{an}中,Sn是前n项和,满足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)证明:数列{
n+1
n
Sn}
是等差数列;
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn
①求证:当n≥2时,Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)

②)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步练习册答案