精英家教网 > 高中数学 > 题目详情
从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
i=1
xi=80
10
i=1
yi
=20,
10
i=1
xiyi
=184,
10
i=1
x
2
i
=720.
1)求家庭的月储蓄y关于月收入x的线性回归方程
?
y
=
?
b
x+
?
a

2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x
考点:线性回归方程
专题:概率与统计
分析:1)利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程:
?
y
=bx+a;
2)通过x=7,利用回归直线方程,推测该家庭的月储蓄.
解答: (本小题满分12分)
解:1)由题意知n=10,
.
x
=
1
n
10
i=1
xi=
1
10
×80=8
.
y
=
1
n
10
i=1
yi=
1
10
×20=2

Ixx=
10
i=1
x
2
i
-n
.
x
2
=720-10×82=80
Ixy=
10
i=1
xiyi-n
.
x
.
y
=184-10×8×2=24

由此得
?
b
=
Ixy
Ixx
=
24
80
=0.3
?
a
=
.
y
-
?
b
.
x
=2-0.3×8=-0.4,
故所求线性回归方程为
y
=0.3x-0.4.
2)将x=7代入回归方程,可以预测该家庭的月储蓄约为
y
=0.3×7-0.4=1.7(千元).
点评:本题考查回归直线方程的求法与应用,基本知识的考查,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图甲所示,点E为矩形ABCD边CD的中点,AB=2,AD=
2
,将△ADE沿AE折起到△AD1E的位置,使得D1-AE-B为直二面角,连接BD1
CD1--得到如图乙所示的几何体.
(1)证明:AE⊥BD1
(2)求二面角D1-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

到直线3x-4y-1=0的距离为2的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,图1中以阴影部分(含边界)的点为元素所组成的集合用描述法表示为{(x,y)|0≤x≤1,0≤y≤2},则图2中以阴影部分(不含外边界但包含坐标轴)的点为元素所组成的集合:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的顶点为(2,-1)与(2,5),它的一条渐近线与直线3x-4y=0平行,则双曲线的准线方程是(  )
A、y=2±
9
5
B、x=2±
9
5
C、y=2±
12
5
D、x=2±
12
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3ax+1在(0,1)上存在x0,使得f(x0)=0,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设⊙Cn:(x-an2+(y-n)2=5n2,且⊙Cn与⊙Cn-1内切,数列{an}是正项数列,且首项a1=1.
(1)求数列{an}的通项公式;
(2)记bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱(底面是正三角形且侧棱垂直底面的三棱柱)ABC-A1B1C1中,
D是BC的中点,2A1A=AB=a.
(Ⅰ)求证:AD⊥B1D;
(Ⅱ)求三棱锥C-AB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等差数列,且a3=5,a5=9;数列{bn}的前n项和为Sn,且Sn=2[1-(
1
2
n].
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=
an
bn
(n∈N+),Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

同步练习册答案