精英家教网 > 高中数学 > 题目详情
如图,已知O为△ABC的外心,a,b,c分别是角A、B、C的对边,且满足
CO
AB
=
BO
CA

(1)推导出三边a,b,c之间的关系式;
(2)求
tanA
tanB
+
tanA
tanC
的值.
分析:(1)取AB、AC的中点E、F,则根据三角形法则可得:
CO
AB
=
1
2
(
CB
+
CA
)•(
CB
-
CA
)=
1
2
(a2-b2)
,同理
BO
CA
=
1
2
(c2-a2)
;进而得到答案.
(2)由题意可得:
tanA
tanB
+
tanA
tanC
=(
cosB
sinB
+
cosC
sinC
)•
sinA
cosA
,再结合两角和与差的正余弦公式、正弦定理、余弦定理进行化简即可求出答案.
解答:解:(1)取AB、AC的中点E、F,
CO
AB
=(
CE
+
EO
)•
AB
=
CE
AB
=
1
2
(
CB
+
CA
)•(
CB
-
CA
)=
1
2
(a2-b2)…(4分)

同理
BO
CA
=
1
2
(c2-a2)

所以2a2=b2+c2…(8分)
(2)由题意可得:
tanA
tanB
+
tanA
tanC
=(
cosB
sinB
+
cosC
sinC
)•
sinA
cosA
=
sin(B+C)•sinA
sinB•sinC•cosA
=
a2
bc•
b2+c2-a2
2bc
=2…(12分)
点评:解决此类问题的关键是熟练掌握向量的三角形法则,以及解三角形的正弦定理与余弦定理等有关三角形的常用知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2
3
cm,AB=6 cm,则∠ACB的度数为
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知O为△ABC的外心,a,b,c分别是角A、B、C的对边,且满足
CO
AB
=
BO
CA

(Ⅰ)证明:2a2=b2+c2; 
(Ⅱ)求
tanA
tanB
+
tanA
tanC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)如图,已知⊙O的弦AB交半径OC于点D,若AD=3,BD=2,且D为OC的中点,则CD的长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知O为△ABC内一点,D、E、F分别为边 BC、CA及AB中点.

(1)求证:++=0是O为△ABC的重心的充要条件.

(2)求证:△ABC与△DEF重心重合.??

查看答案和解析>>

同步练习册答案