【题目】已知某几何体的三视图如图所示,则它的外接球表面积为________.
![]()
【答案】4π
【解析】由三视图可知该几何体是三棱锥,且三棱锥的高为1,底面为一个直角三角形,由于底面斜边上的中线长为1,则底面的外接圆半径为1,顶点在底面上的投影落在底面外接圆的圆心上,由于顶点到底面的距离与底面外接圆的半径相等,则三棱锥的外接球半径R为1,则三棱锥的外接球表面积S=4πR2=4π.
点睛:空间几何体与球接、切问题的求解方法
(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
(2)若球面上四点
构成的三条线段
两两互相垂直,且
,一般把有关元素“补形”成为一个球内接长方体,利用
求解.
科目:高中数学 来源: 题型:
【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(I)求直方图中
的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=
.
![]()
(Ⅰ)证明:DE∥平面BCF;
(Ⅱ)证明:CF⊥平面ABF;
(Ⅲ)当AD=
时,求三棱锥F﹣DEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线![]()
(1)化
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点P对应的参数为
,Q为
上的动点,求PQ的中点M到直线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知国家某5A级大型景区对拥挤等级与每日游客数量
(单位:百人)的关系有如下规定:当![]()
时,拥挤等级为“优”;当![]()
时,拥挤等级为“良”;当![]()
时,拥挤等级为“拥挤”;当![]()
时,拥挤等级为“严重拥挤”。该景区对6月份的游客数量作出如图的统计数据:
![]()
(Ⅰ)下面是根据统计数据得到的频率分布表,求出
的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量 (单位:百人) |
|
|
|
|
天数 |
|
|
|
|
频率 |
|
|
|
|
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点
的直线
的参数方程是
(
为参数).以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程式为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于两点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点
的椭圆
经过点
,且点
为其右焦点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在平行于
的直线
,使得直线
与椭圆
有公共点,且直线
与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通常表明地震能量大小的尺度是里氏震级,其计算公式为:
,其中,
是被测地震的最大振幅,
是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)。
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?
(以下数据供参考:
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com