精英家教网 > 高中数学 > 题目详情
双曲线
x2
4
-y2=1的焦点坐标是(  )
A、(±
3
,0)
B、(±
5
,0)
C、(0,±
3
D、(0,±
5
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,再由c=
a2+b2
,即可得到c,进而得到焦点坐标.
解答: 解:双曲线
x2
4
-y2=1的a=2,b=1,
则c=
a2+b2
=
5

又焦点在x轴上,则焦点坐标为(±
5
,0).
故选B.
点评:本题考查双曲线的方程和性质,注意双曲线的焦点位置和a,b,c的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=2,求
4sinα-2cosα
5cosα+3sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车租赁公司的月收益y元与每辆车的月租金x元间的关系为y=-
x2
50
+162x-21000.
(1)当每辆车的月租金定为5000元时,能租出多少辆车?
(2)每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若对于任意的x,y∈[-1,1],x+y≠0,均有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式f(x+
1
2
)<f(1-2x);
(3)若对于区间[-1,1]上任意的x1,x2均有|f(x2)-f(x1)|≤m2-m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-
1
2
ax2+x有极值且极值大于0,则a的取值范围是(  )
A、(0,1)
B、(1,2)
C、(0,2)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n-2)2的取值范围是(  )
A、[2,
5
]
B、(
2
5
)
C、[2,5]
D、(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学对函数f(x)=xcosx进行研究后,得出以下五个结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,f(x)>0均成立;
③函数[a,b]的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是(  )
A、①②④B、①②③④
C、①②④⑤D、①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=
10
,它的一条渐近线与抛物线y2=2px(p>0)的准线交点的纵坐标为6,则正数p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-
1
2
cos2x,x∈R,
(1)求函数f(x)的最小正周期及单调区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,且满足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

同步练习册答案