精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合A={x|y=},B={x|x2-x-6=0}.

(1)若a=-1,求A∩B;

(2)若()∩B=,求实数a的取值范围.

【答案】(1) {-2};(2) (3,+∞).

【解析】试题分析:(1) 先求出集合B={-2,3},又a-x>0,解得集合A=(-∞,a),将a=-1代入,求出集合的交集;(2)先求出集合A的补集,根据()∩B=,求出a的范围.

试题解析:

(1)∵x2-x-6=0,

∴x1=3x2=-2

∴B={-2,3}

∵a-x>0

∴x<a

∴A=(-∞,a)

∵a=-1,∴A=(-∞,-1)

∴A∩B={-2}

(2)∵A=[a,+∞),B={-2,3},(A)∩B=

∴a>3,即a∈(3,+∞).

点睛: 1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lg(ax﹣bx),且f(1)=lg2,f(2)=lg12

(1)求a,b的值.

(2)当x∈[1,2]时,求f(x)的最大值.

(3)m为何值时,函数g(x)=ax的图象与h(x)=bx﹣m的图象恒有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线斜率为1,求函数上的最值;

(2)令,若时,恒成立,求实数的取值范围;

(3)当时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考广东,文19】设数列的前项和为.已知,且当

时,

(1)求的值;

(2)证明:为等比数列;

(3)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,映射满足,求满足条件的映射的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若为奇函数,求的值;

(2)试判断内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案