精英家教网 > 高中数学 > 题目详情
11.已知sin(π+α)=$\frac{4}{5}$,则sin($\frac{π}{2}$+2α)=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.-$\frac{24}{25}$D.$\frac{24}{25}$

分析 已知等式利用诱导公式求出sinα的值,利用二倍角的三角函数公式求出cos2α的值,原式变形后代入计算即可求出值.

解答 解:∵sin(π+α)=-sinα=$\frac{4}{5}$,
∴sinα=-$\frac{4}{5}$,
则原式=cos2α=1-2sin2α=-$\frac{7}{25}$,
故选:B.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\frac{4sinxcosx}{2sinx+2cosx+1}$,x∈(0,$\frac{π}{2}$).
(1)令t=sinx+cosx,可将已知三角函数关系y=f(x)转换成代数函数关系y=g(t),试写出函数y=g(t)的表达式及定义域;
(2)求函数y=f(x)的最大值;
(3)函数y=f(x)在区间(0,$\frac{π}{2}$)内是单调函数吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校在2 015年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如图所示的频率分布直方图.
(Ⅰ)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);
(Ⅱ)这50名学生中成绩在120分以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是定义在(-π,0)∪(0,π)的奇函数,其导函数为f′(x),且$f({\frac{π}{2}})=0$,当x∈(0,π)时,f′(x)sinx-f(x)cosx<0,则关于x的不等式$f(x)<2f({\frac{π}{6}})sinx$的解集为(  )
A.$({-\frac{π}{6},0})∪({0,\frac{π}{6}})$B.$({-\frac{π}{6},0})∪({\frac{π}{6},π})$C.$({-\frac{π}{6},0})∪({\frac{π}{6},\frac{π}{2}})$D.$({-π,-\frac{π}{6}})∪({0,\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,长轴长为等于圆R:x2+(y-2)2=4的直径,过点P(0,1)的直线l与椭圆C交于两点A,B,与圆R交于两点M,N
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线RA,RB的斜率之和等于零;
(Ⅲ)求|AB|•|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是一个三棱锥的三视图,则该三棱锥的外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(Ⅰ)求五年一班的女生立定跳远成绩的中位数;
(Ⅱ)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(Ⅲ)若从五年一班成绩“合格”的学生中选取2人参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F,双曲线${x}^{2}-\frac{{y}^{2}}{3}=1$的一条渐近线与椭圆C交于A,B两点,且
AF⊥BF,则椭圆C的离心率为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-1|+|2x+5|,f(x)-m≥0恒成立.
(I)求实数m的取值范围;
(Ⅱ)若m的最大值为n,解不等式|x-3|-2x≤2n-8.

查看答案和解析>>

同步练习册答案