【题目】如图所示,在正方体
.
![]()
(1)求AC与
所成角的大小;
(2)若E,F分别为AB,AD的中点,求EF与平面
所成角的正切值.
【答案】(1)60°;(2)
.
【解析】
(1)由
是正方体,可得从而
与AC所成的角就是AC与
所成的角,根据三角形的几何性质即可求解.
(2)连接BD,所以
,所以EF与平面
所成角即等于BD与平面
所成角,即角
即为所求,根据边长关系,即可求得
的正切值.
解:(1)如图所示,连接
,
,由
是正方体,
易知
,从而
与AC所成的角就是AC与
所成的角,
∵
,∴
,
即
与AC所成的角为60°.
![]()
(2)连接BD,在正方体
中,∵E,F分别为AB,AD的中点,
∴
,所以EF与平面
所成角即等于BD与平面
所成角,
设BD与AC交于点O,连接
,
因为
,
,且
,
所以
平面
,所以平面
平面
,
所以
即为BO在平面
的射影所在的线段;
即为BO与平面
所成的角,
设该正方体边长为2,得
,
,
,所以EF与平面
所成角的正切值为
.
科目:高中数学 来源: 题型:
【题目】某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合
与
的关系):
年份代号( | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
当年收入( | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求
关于
的线性回归方程
;
(Ⅱ)试预测2020年该企业的收入.
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为A,上顶点为B.已知椭圆的离心率为
,
.
(1)求椭圆的方程;
(2)设直线
与椭圆交于
,
两点,
与直线
交于点M,且点P,M均在第四象限.若
的面积是
面积的2倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为
(
).
(1)若直线l在两坐标轴上的截距相等,求直线l的方程;
(2)若直线l与x正半轴、射线
(
)分别交于P,Q两点,当a为何值时,
的面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右顶点分别为
,左焦点为
,点
为椭圆
上任一点,若直线
与
的斜率之积为
,且椭圆
经过点
.
(1)求椭圆的方程;
(2)若
交直线
于
两点,过左焦点
作以
为直径的圆的切线.问切线长是否为定值,若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校初一年级全年级共有
名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为
万字.根据阅读量分组按分层抽样的方法从全年级
人中抽出
人来作进一步调查.
![]()
(1)在阅读量为
万到
万字的同学中有
人的成绩优秀,在阅量为
万到
万字的同学中有
人成绩不优秀,请完成下面的
列联表,并判断在“犯错误概率不超过
”的前提下,能否认为“学生成绩优秀与阅读量有相关关系”;
阅读量为 | 阅读量为 | 合计 | |
成绩优秀的人数 | |||
成绩不优秀的人数 | |||
合计 |
(2)在抽出的同学中,1)求抽到被污染部分的同学人数;2)从阅读量在
万到
万字及
万到
万字的同学中选出
人写出阅读的心得体会.求这
人中恰有
人来自阅读量是
万到
万的概率.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间
内,其频率分布直方图如图.
![]()
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间
的参赛者中,利用分层抽样的方法随机抽取
人参加学校座谈交流,那么从得分在区间
与
各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的
人中,选出
人参加全市座谈交流,设
表示得分在区间
中参加全市座谈交流的人数,求
的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,D为A1B1的中点,AB=BC=2,
,
,则异面直线BD与AC所成的角为( )
![]()
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲机床 | 8 | 12 | 40 | 32 | 8 |
乙机床 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com