精英家教网 > 高中数学 > 题目详情
设直线l:y=kx+m (k、m∈Z)与椭圆
x2
4
+
y2
3
=1
交于不同两点B、D,与双曲线
x2
4
-
y2
12
=1
交于不同两点E、F.满足
|DF|=|BE|的直线l有
5
5
 条.
分析:根据椭圆、双曲线具有公共的顶点,同时是中心对称图形,由于直线l:y=kx+m (k、m∈Z),结合图形可解
解答:解:由于椭圆、双曲线具有公共的顶点,同时是中心对称图形,双曲线的渐近线方程为y=±
3
x
,利用图形可知,使得DF|=|BE|的直线l为:y=±1,y=±x,y=0,
故答案为5
点评:本题主要考查图形的对称性,考查数形结合得数学思想,属于简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(-
3
,0)
,B是圆C:(x-
3
)2+y2=16
(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹方程;
(2)设直线l:y=kx+m(k≠0,m>0)与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在y轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-3x+4y=0的圆心C.
(1)求椭圆的标准方程;
(2)设直线l:y=kx+1与椭圆交于A,B两点,点P(0,
1
3
)且|PA|=|PB|,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)已知椭圆C的长轴长为2
2
,一个焦点的坐标为(1,0).
(1)求椭圆C的标准方程;
(2)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
①若直线l斜率k=1,求△ABP的面积;
②若直线AP,BP的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

同步练习册答案