分析 (1)弦化切,代入计算,可得结论;
(2)利用原式=sin2θ-4sin θcos θ+3cos2θ=$\frac{si{n}^{2}θ-4sinθcosθ+3co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ-4tanθ+3}{1+ta{n}^{2}θ}$,代入计算,可得结论.
解答 解:(1)原式=$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{4tanθ-2}{3tanθ+5}$=$\frac{6}{11}$..(4分)
(2)原式=sin2θ-4sin θcos θ+3cos2θ=$\frac{si{n}^{2}θ-4sinθcosθ+3co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ-4tanθ+3}{1+ta{n}^{2}θ}$=-$\frac{1}{5}$.(4分)
点评 本题考查三角函数值的计算,考查二倍角公式的运用,正确弦化切是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,2] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com