精英家教网 > 高中数学 > 题目详情
经过棱锥的高的两个三等分点作两个平行于棱锥底面的截面,则这个棱锥被这两个截面分成的三部分的体积比为(  )
A、1:2:3
B、4:9:27
C、1:8:27
D、1:7:19
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:通过两个截面将锥体的体积依次分成三部分,设体积分别为V1,V2,V3,根据相似的性质,求出三个相应锥体的体积之比,相减后即可得到答案.
解答: 解:由已知中从顶点起将三棱锥的高三等分,过两个分点分别作平行于底面的截面,
则以分别以原来底面和两个截面为底面的锥体,是相似几何体,
高的比是相似比为1:2:3,
根据相似的性质三个锥体的体积的相似比为:13:23:33=1:8:27,
则分成三部分的体积比为V1:V2:V3=1:(8-1):(27-8)=1:7:19.
故选:D.
点评:本题考查的知识点是棱锥的体积,其中利用相似的性质,高之比等于相似比,面积之比等于相似比的平方,体积之比等于相似比的立方,求出三个锥体的体积之比是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=1关于直线y=x+b对称,则实数b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(π+α)=-
10
5
,且α∈(-
π
2
,0),则tan(
3
2
π+α
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={0,1,2,4,5,8},N={0,2,3,5},则N∩M=(  )
A、{1,3}
B、{1,4,8}
C、{0,2,5}
D、{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,过F作斜率为1的直线交双曲线的渐近线于A,B两点,且|OB|=2|OA|,则该双曲线的离心率为(  )
A、
10
3
B、
10
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的周长为8,C(0,0),B(2,0),过B的直线与∠CAB的外角平分线垂直,且交AC的延长线于M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是△ABC的三个内角,若
1+sin2B
cos2B-sin2B
=2+
3
,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C1,抛物线C2的焦点均在x轴上,C1的中心与C2的顶点均为原点,从每条曲线上至少取一个点,将其坐标记录如下:
x1
2
3
23
y2
2
2
242
6
则在C1和C2上点的个数分别是(  )
A、1,4B、2,3
C、4,1D、3,3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知9sin2α=2tanα,α∈(
π
2
,π),则cosα=
 

查看答案和解析>>

同步练习册答案