精英家教网 > 高中数学 > 题目详情

的所有排列的集合为,记

;求.(其中表示集合的元素个数).


解析:

:我们一般地证明,若,对于前个正整数的所有排列构成的集合,若,则

下面用数学归纳法证明:

时,由排序不等式知,集合中的最小元素是,最大元素是

.又,

,所以,=共有11=个元素.因此,时命题成立.假设命题在)时成立;考虑命题在时的情况.对于的任一排列,恒取,得到的一个排列

.由归纳假设知,此时取遍区间

上所有整数.

再令,则

再由归纳假设知,取遍区间

上的所有整数.

因为,所以,取遍区间

上的所有整数.即命题对也成立.由数学归纳法知,命题成立.

由于  ,从而,集合

的元素个数为.特别是,当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(t)=at2-
b
t+
1
4a
(t∈R)有最大值,且最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}
(1)求集合A和B;
(2)定义:“A-B={x∈A,且x∉B}”设a,b,x均为整数,且x∈A.记P(E)为x取自集合A-B的概率,P(F)x取集合A∩B的概率.已知P(E)=
2
3
,P(F)=
1
3
.记满足上述条件的所有a的值从小到大排列构成的数列为{an},所有b的值从小到大排列构成数列{bn}.
①求a1,a2,a3和b1,b2,b3
②请写出数列{an}和{bn}的通项公式(不必证明);
③如果在函数中f(t)中,a=an,b=bn,记f(t)的最大值为g(n),cn=
1-12g(n)
4g(n)
,Sn=c1c2+c2c3+…+cncn+1,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是集合{2s+2t|0≤s<t,且s,t∈Z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12…,将数列{an}中各项按照上小下大,左小右大的原则排成如下等腰直角三角形数表:
3
5   6
9   10   12

则第四行四个数分别为
 
;且a2012=
 
(用2s+2t形式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设{an}是集合中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,……

将数列{an}各项按照上小下大,左小右大的原则写成如下的三角形数表:

(i)写出这个三角形数表的第四行、第五行各数;

(ii)求a100

(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)

设{bn}是集合中所有的数从小到大排列成的数列,已知bk =1160,求k

查看答案和解析>>

科目:高中数学 来源: 题型:

22.(Ⅰ)设{an}是集合{2t+2s|0≤st,且stZ}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…….

将数列{an}各项按照上小下大,左小右大的原则写成如下的三角形数表:

(ⅰ)写出这个三角形数表的第四行、第五行各数;

(ⅱ)求a100.

(Ⅱ)(本小题为附加题)

设{bn}是集合{2t+2s+2r|0≤r<s<t,且rstZ}中所有的数从小到大排列成的数列.

已知bk=1160,求k.

查看答案和解析>>

同步练习册答案