精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)满足f(2-x)=f(2+x),且当x∈(0,2)时,有f(x)=log2x,则f(2013)=
0
0
分析:由f(2-x)=f(2+x)可得f(-x)=f(4+x),结合已知奇函数f(-x)=-f(x)可得f(4+x)=-f(x),结合已知区间上的函数解析式即可求解
解答:解:∵f(2-x)=f(2+x)
即f(x)=f(4-x)
∴f以-x替换上式的x可得,(-x)=f(4+x)①
∵函数f(x)是奇函数
∴f(-x)=-f(x)②
联立①②可得f(4+x)=-f(x)
∵x∈(0,2)时,有f(x)=log2x,
∴f(1)=0
∴f(2013)=f(4×503+1)=-f(1)=0
故答案为:0
点评:本题主要考查了奇函数的性质及函数的对称性质的综合应用,解题的关键是函数性质的灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省本溪一中、庄河高中联考高三(上)期末数学试卷(文科)(解析版) 题型:选择题

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三第二次质量检测数学试卷(文科)(解析版) 题型:选择题

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中数学 来源:2011年湖北省高考数学试卷(文科)(解析版) 题型:选择题

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中数学 来源:湖北 题型:单选题

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A.ex-e-xB.
1
2
(ex+e-x
C.
1
2
(e-x-ex
D.
1
2
(ex-e-x

查看答案和解析>>

同步练习册答案