精英家教网 > 高中数学 > 题目详情
7.已知集合M={x|x2-2x≤0},N={x|-2<x<1},则M∩N=(  )
A.(-2,1)B.[0,1)C.(1,2]D.(-2,2]

分析 求解一元二次不等式化简集合M,再利用交集运算求解即可.

解答 解:由M={x|x2-2x≤0}={x|0≤x≤2},N={x|-2<x<1},
得M∩N={x|0≤x≤2}∩{x|-2<x<1}={x|0≤x<1}=[0,1).
故选:B.

点评 本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.抛物线y2=2nx(n<0)与双曲线$\frac{x^2}{4}$-$\frac{y^2}{m^2}$=1有一个相同的焦点,则动点(m,n)的轨迹是(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设l,m是两条不同的直线,α,β是两个不同的平面,则下列命题为真命题的序号是(3)
(1)若m∥l,m∥α,则l∥α;
(2)若m⊥α,l⊥m,则l∥α;
(3)若α∥β,l⊥α,m∥β,则l⊥m;
(4)若m?α,m∥β,l?β,l∥α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“α是锐角”是“cosα>0”的(  )
A.充要条件B.必要不充分条件
C.既不充分又不必要条件D.充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin2x+cosx在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值是(  )
A.$\frac{\sqrt{2}-1}{2}$B.-$\frac{\sqrt{2}+1}{2}$C.-1D.$\frac{1-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是递增的等差数列,前n项和为Sn,a1=1,且a1,a2,S3成等比数列.
(1)求an及Sn
(2)求数列{$\frac{1}{4{S}_{n}-1}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知sin(α+$\frac{π}{12}$)=$\frac{1}{3}$,则cos(α+$\frac{7π}{12}$)的值(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题P:方程x2+mx+1=0有两个不等的实数根,命题q:方程4x2+4(m-2)x+1=0无实数根.若p∧q为假,若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,直线x+(m+1)y=2-m与直线mx+2y=-8互相垂直,则实数m=-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案