精英家教网 > 高中数学 > 题目详情
已知f(x)=(x-a)(x-b)-2,m、n是方程f(x)=0的两根,且a<b,m<n,则实数a、b、m、n的大小关系是(    )

A.m<a<b<n            B.a<m<n<b             C.a<m<b<n            D.m<a<n<b

思路解析:由题意可知m、n是方程f(x)=(x-a)(x-b)-2=x2-(a+b)x-2=0的两根,所以a+b=m+n.又因为a<b,m<n,所以a+m<b+n.所以a+m+a+b<b+n+m+n.所以n>a.同理可得b>m.因为(n-a)(n-b)-2=0,所以(n-a)(n-b)=2>0.又因为n>a,所以n>b.同理,m<a.即m<a<b<n.

因此,选A.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2时,求f(x)的值域;
(2) b≥2时,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的最大值为1
B、函数y=f(x)•g(x)的对称中心是(
2
+
π
4
,0),k∈Z
C、当x∈[-
π
2
π
2
]
时,函数y=f(x)•g(x)单调递增
D、将f(x)的图象向右平移
π
2
单位后得g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,则下列函数的图象错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案