精英家教网 > 高中数学 > 题目详情
(2012•黄州区模拟)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率的最小值是(  )
分析:先确定1<b<2,再确定函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率,利用基本不等式可得结论.
解答:解:由题意,将(1,0)代入函数解析式,可得1-b+a=0
又0<f(0)<1,∴0<a<1,∴1<b<2
函数g(x)=2lnx+f(x)的导函数为g′(x)=
2
x
+2x-b

∴函数g(x)=2lnx+f(x)在点(b,g(b))处切线的斜率为
2
b
+2b-b=
2
b
+b

∵1<b<2,
2
b
+b≥2
2
(当且仅当b=
2
时取等号)
故选D.
点评:本题考查导数知识的运用,考查导数的几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),设函数f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-
3
a,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知某几何体的三视图如图,则该几何体的表面积为
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知函数f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,则f(f(27))=(  )

查看答案和解析>>

同步练习册答案