精英家教网 > 高中数学 > 题目详情
8.如图,正方体的棱长为a,P、Q分别为A1D、B1D1的中点
(1)求证:PQ∥平面AA1B1B
(2)求PQ的长.

分析 (1)以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,利用向量法能证明PQ∥平面AA1B1B.
(2)由已知条件利用向量法能求出PQ的长.

解答 证明:(1)以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,
建立空间直角坐标系,
P($\frac{a}{2}$,0,$\frac{a}{2}$),Q($\frac{a}{2},\frac{a}{2}$,0),
$\overrightarrow{PQ}$=(0,$\frac{a}{2}$,-$\frac{a}{2}$),
平面AA1B1B的法向量$\overrightarrow{n}$=(1,0,0),
∵$\overrightarrow{PQ}•\overrightarrow{n}$=0,PQ?平面AA1B1B,
∴PQ∥平面AA1B1B.
解:(2)PQ的长|$\overrightarrow{PQ}$|=$\sqrt{(\frac{a}{2})^{2}+(-\frac{a}{2})^{2}}$=$\frac{\sqrt{2}}{2}a$.

点评 本题考查线面平行的证明,考查线段长的求法,考查推理论证能力、运算求解能力、空间思维能力、空间想象能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.化简sin690°的值是(  )
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三条不重合的直线m,n,l 和两个不重合的平面 α,β 下列命题正确的是(  )
A.若m∥n,n?α,则 m∥αB.若α⊥β,α∩β=m,m⊥n,则 n⊥α
C.若l⊥n,m⊥n,则 l∥mD.若l⊥α,m⊥β,且 l⊥m,则 α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若一个圆柱的正视图与其侧面展开图是相似矩形,则这个圆柱的全面积与侧面积之比为(  )
A.$1+\sqrt{π}$B.1+$\frac{1}{{\sqrt{π}}}$C.$1+\frac{1}{{\sqrt{2π}}}$D.$1+\frac{1}{{2\sqrt{π}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在锐角三角形ABC中,$\frac{{{a^2}+{b^2}-{c^2}}}{-ac}=\frac{cos(A+C)}{sinAcosA}$.
(1)求角A;
(2)若$a=\sqrt{3}$,当$sinB+cos(C-\frac{7π}{12})$取得最大值时,求B和b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的偶函数f(x),满足f(x+4)=f(x)+f(2),且0≤x≤2时,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函数g(x)=f(x)-a|x|(a≠0),在区间[-3,3]上至多有9个零点,则a=20-8$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)≥7;
(Ⅱ)若关于x的不等式f(x)+|x-2|>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列结论正确的是(  )
A.命题“如果p2+q2=2,则p+q≤2”的否命题是“如果p+q>2,则p2+q2≠2”
B.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∨q为假
C.“若am2<bm2,则a<b”的逆命题为真命题
D.若${(\sqrt{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中第四项为常数项,则n=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下联表:已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是$\frac{3}{5}$
喜欢户外活动不喜欢户外活动合计
男性20525
女性101525
合计302050
(1)请将列联表补充完整:
(2)是否有99%的把握认为喜欢户外运动与性别有关?并说明理由.下面临界值仅供参考:(大于2.706-90%,大于3.841-95%,大于6.635-99%)
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案