精英家教网 > 高中数学 > 题目详情
从装有编号分别为a,b的2个黄球和编号分别为 c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:
(Ⅰ)第1次摸到黄球的概率;
(Ⅱ)第2次摸到黄球的概率.
【答案】分析:(Ⅰ)袋中共有四球,故总的摸法有四种,再求出事件“第1次摸到黄球”的基本事件数;
(Ⅱ)列举出所有可能的情况数,查出事件“第2次摸到黄球”包含的基本事件数,利用公式求出概率.
解答:解:(Ⅰ)第1次摸球有4个可能的结果:a,b,c,d,其中第1次摸到黄球的结果包括:a,b,故第1次摸到黄球的概率是.(4分)
(Ⅱ)先后两次摸球有12种可能的结果:(a,b)(a,c)(a,d)(b,a)(b,c)(b,d)(c,a)(c,b)(c,d)(d,a)(d,b)(d,c),其中第2次摸到黄球的结果包括:(a,b)(b,a)(c,a)(c,b)(d,a)(d,b),故第2次摸到黄球的概率为.(10分)
点评:本题考查列举法计算基本事件数及事件发生的概率,解题的关键是不重不漏地列举出所有的基本事件数,再由等可能事件的概率公式求出概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从装有编号分别为a,b的2个黄球和编号分别为 c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:
(Ⅰ)第1次摸到黄球的概率;
(Ⅱ)第2次摸到黄球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)一口袋中装有编号为1.2.3.4.5.6.7的七个大小相同的小球,现从口袋中一次随机抽取两球,每个球被抽到的概率是相等的,用符号(a,b)表示事件“抽到的两球的编号分别为a,b,且a<b”.
(Ⅰ)总共有多少个基本事件?用列举法全部列举出来;
(Ⅱ)求所抽取的两个球的编号之和大于6且小于10的概率.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市番禺区高二下学期期中考试数学(文) 题型:解答题

(12分)从装有编号分别为a,b的2个黄球和编号分别为 c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:
(1)第1次摸到黄球的概率;(2)第2次摸到黄球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从装有编号分别为a,b的2个黄球和编号分别为 c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:
(Ⅰ)第1次摸到黄球的概率;
(Ⅱ)第2次摸到黄球的概率.

查看答案和解析>>

同步练习册答案