精英家教网 > 高中数学 > 题目详情
21、已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC.若AD=2,AE=1,求CD的长.
分析:先由切割线定理AD2=AE•AB,结合已知条件求得AB的值,再设CD=x,在直角三角形ABC中利用勾股定理列方程求解即可.
解答:解:因为圆O与AC切于点D,由切割线定理得
AD2=AE•AB,即22=AB,∴AB=4.(4分)
设CD=x,则CB=x,
在直角三角形ABC中,x2+42=(x+2)2
解之得x=3.(10分)
点评:本题利用了弦切角定理和与圆有关的比例线段的性质,三角形勾股定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知:如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中点,求异面直线AE与PC所成角的余弦值;
(Ⅲ)在BC边上是否存在一点G,使得D点到平面PAG的距离为1?若存在,求出BG的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知:如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中点,求异面直线AE与PC所成角的余弦值;
(Ⅲ)点G在线段BC上,且BG=
3
,求点D到平面PAG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知:如图,在空间四边形ABCD中,AB⊥CD且AC⊥BD,求证:AD⊥BC.

查看答案和解析>>

同步练习册答案