精英家教网 > 高中数学 > 题目详情
过椭圆的右焦点F2作倾斜角为弦AB,则|AB︳为(    )
A.B.C.D.
B

试题分析:椭圆,则a=,b=1, c=1,,两个焦点(-1,0), (1,0)。
直线AB的方程为y=x-1 ,代入整理得3
所以由弦长公式得|AB|==,故选B.
点评:基础题,利用数形结合思想,通过确定弦的方程,进一步转化成代数问题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,如图,已知椭圆C的上、下顶点分别为AB,点P在椭圆C上且异于点AB,直线APPB与直线ly=-2分别交于点MN.

(1)设直线APPB的斜率分别为k1k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的两焦点是,则其焦距长为            ,若点是椭圆上一点,且 是直角三角形,则的大小是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,
求椭圆的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆C:的上顶点坐标为,离心率为.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上有两点P、Q ,O为原点,若OP、OQ斜率之积为,等于(      )
A. 4B. 64C. 20D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点坐标为,那么的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案